Andrew Cooke | Contents | Latest | RSS | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Choochoo Training Diary

Last 100 entries

Surprise Paradox; [Books] Good Author List; [Computing] Efficient queries with grouping in Postgres; [Computing] Automatic Wake (Linux); [Computing] AWS CDK Aspects in Go; [Bike] Adidas Gravel Shoes; [Computing, Horror] Biological Chips; [Books] Weird Lit Recs; [Covid] Extended SIR Models; [Art] York-based Printmaker; [Physics] Quantum Transitions are not Instantaneous; [Computing] AI and Drum Machines; [Computing] Probabilities, Stopping Times, Martingales; bpftrace Intro Article; [Computing] Starlab Systems - Linux Laptops; [Computing] Extended Berkeley Packet Filter; [Green] Mainspring Linear Generator; Better Approach; Rummikub Solver; Chilean Poetry; Felicitations - Empowerment Grant; [Bike] Fixing Spyre Brakes (That Need Constant Adjustment); [Computing, Music] Raspberry Pi Media (Audio) Streamer; [Computing] Amazing Hack To Embed DSL In Python; [Bike] Ruta Del Condor (El Alfalfal); [Bike] Estimating Power On Climbs; [Computing] Applying Azure B2C Authentication To Function Apps; [Bike] Gearing On The Back Of An Envelope; [Computing] Okular and Postscript in OpenSuse; There's a fix!; [Computing] Fail2Ban on OpenSuse Leap 15.3 (NFTables); [Cycling, Computing] Power Calculation and Brakes; [Hardware, Computing] Amazing Pockit Computer; Bullying; How I Am - 3 Years Post Accident, 8+ Years With MS; [USA Politics] In America's Uncivil War Republicans Are The Aggressors; [Programming] Selenium and Python; Better Walking Data; [Bike] How Fast Before Walking More Efficient Than Cycling?; [COVID] Coronavirus And Cycling; [Programming] Docker on OpenSuse; Cadence v Speed; [Bike] Gearing For Real Cyclists; [Programming] React plotting - visx; [Programming] React Leaflet; AliExpress Independent Sellers; Applebaum - Twilight of Democracy; [Politics] Back + US Elections; [Programming,Exercise] Simple Timer Script; [News] 2019: The year revolt went global; [Politics] The world's most-surveilled cities; [Bike] Hope Freehub; [Restaurant] Mama Chau's (Chinese, Providencia); [Politics] Brexit Podcast; [Diary] Pneumonia; [Politics] Britain's Reichstag Fire moment; install cairo; [Programming] GCC Sanitizer Flags; [GPU, Programming] Per-Thread Program Counters; My Bike Accident - Looking Back One Year; [Python] Geographic heights are incredibly easy!; [Cooking] Cookie Recipe; Efficient, Simple, Directed Maximisation of Noisy Function; And for argparse; Bash Completion in Python; [Computing] Configuring Github Jekyll Locally; [Maths, Link] The Napkin Project; You can Masquerade in Firewalld; [Bike] Servicing Budget (Spring) Forks; [Crypto] CIA Internet Comms Failure; [Python] Cute Rate Limiting API; [Causality] Judea Pearl Lecture; [Security, Computing] Chinese Hardware Hack Of Supermicro Boards; SQLAlchemy Joined Table Inheritance and Delete Cascade; [Translation] The Club; [Computing] Super Potato Bruh; [Computing] Extending Jupyter; Further HRM Details; [Computing, Bike] Activities in ch2; [Books, Link] Modern Japanese Lit; What ended up there; [Link, Book] Logic Book; Update - Garmin Express / Connect; Garmin Forerunner 35 v 230; [Link, Politics, Internet] Government Trolls; [Link, Politics] Why identity politics benefits the right more than the left; SSH Forwarding; A Specification For Repeating Events; A Fight for the Soul of Science; [Science, Book, Link] Lost In Math; OpenSuse Leap 15 Network Fixes; Update; [Book] Galileo's Middle Finger; [Bike] Chinese Carbon Rims; [Bike] Servicing Shimano XT Front Hub HB-M8010; [Bike] Aliexpress Cycling Tops; [Computing] Change to ssh handling of multiple identities?; [Bike] Endura Hummvee Lite II; [Computing] Marble Based Logic; [Link, Politics] Sanity Check For Nuclear Launch; [Link, Science] Entropy and Life

© 2006-2017 Andrew Cooke (site) / post authors (content).

Compiling Recursive Descent to Regular Expressions

From: "andrew cooke" <andrew@...>

Date: Sat, 4 Apr 2009 09:20:37 -0400 (CLT)

I just finished some initial tests on "compiling" the recursive descent
parser in LEPL to a discrete finite automata (DFA) using regular
expressions.

There are some limitations, of course - I only change the lower parts of
the tree that match characters.  This is not quite as obvious as it may
sound because my regular expression engine can handle arbitrary Python
objects, so regular expressions do not have to be made of letters.  But I
do need to write the conversion from matcher to regular expression for
each matcher, and currently only handle And, Or, Any, Literal and some
calls to DepthFirst (which is the core repetition matcher).

But even that explanation is not complete, because those matchers are
actually a large fraction of what is used in most parsers (LEPL provides
many more matchers, but they are sugar built on top of these).  In
practice the biggest problem is that arbitrary transforms (functions) can
be invoked on the results as they are generated.

I ameliorated the effect of actions by making composition explicit -
composite actions are now available for inspection internally as lists of
functions, and the regular expression rewriting engine makes use of this
to identify "add" (the function used to combine strings).

Another limitation is that the fastest regular expression engine gives
only a single greedy match.  But a second engine, using a pushdown
automaton, is nearly as fast (see results below) and provides all possible
matches.


Anyway, as an example, here is the regular expression that is
auto-generated for the Float() matcher:
([\+\-]|)([0-9]([0-9])*(\.|)|([0-9]([0-9])*|)\.[0-9]([0-9])*)([Ee]([\+\-]|)[0-9]([0-9])*|)


Note that the code would be even faster if people used the Regexp()
matcher to provide a regular expression directly (which uses Python's fast
"re" library), but then you start to lose some of the other advantages of
LEPL (you only get the greedy match, the syntax is uglier, reuse is
harder).

Even then, I could replace my "greedy" engine with Python's (and keep the
automatic rewriting).  In practice, I don't do that because (1) the regexp
syntax I use is simpler and easier to target and (2) my engine works with
streams of data, while Python's requires (as far as I can tell) that the
string be in-memory (in theory you can use my regexp to parse a file that
is larger than the memory available to Python; testing large files is
still on my todo list).


Anyway, to the performance tests.  I used my standard expressions example,
but "spiced up" to add some complexity (yes, this improves the results
below).  So instead of matching integers I match float values (including
exponents).

The expression to match is '1.2e3 + 2.3e4 * (3.4e5 + 4.5e6 - 5.6e7)'

The results are (in arbitrary units):
Default config: 5.8
NFA (slower pushdown) regexp: 2.9
DFA (faster greedy) regexp: 2.8

So the parser is "twice as fast".  Note that this is only timing for
parsing - rewriting the parser will take more time with the extra
rewriting (I haven't measured it, and it's not noticeable in use, but it
must take more).


In summary the following aspects of LEPL's design helped here:
- Using a small core of matchers (with syntactic sugar on top)
- Exposing the DAG of matchers for rewriting before use
- Exposing composed actions to rewriting

Andrew

Comment on this post