
Algebraic ABCs

Summary

ABCs1 and type annotations are recent additions to the Python
language. ABCs let programmers describe the kind of data they
have in their programs. Type annotations associate these descrip-
tions with particular variables. Together these let programmers
add type–related metadata to their code and then use that in-
formation, through functions like isinstance() and issub-
class(), when the program runs.

This paper describes work to provide more detailed meta-
data: instead of saying “this is a list” you can say “this is a list
of integers”. It also investigates how this information can be
used: to check that the description matches the data, perhaps, or
to indicate that different functions are called depending on the
function arguments.

To do all this in a clear, consistent way, I use ideas from
“type systems” in other languages. But that does not mean that I
am adding such a system to Python; I am simply using the other
languages to help decide how best to describe the data. The end
result stays true to the idea that Python is “dynamically typed”.
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Abstract
I explore what parametric, polymorphic, algebraic types might
“mean” in Python, present a library that implements one ap-
proach, and suggest a few small changes to the base language
as a consequence.

The result is a natural, expressive DSL2, embedded in Python.
Its semantics extend the ABC approach with registration of in-
stances and iteration over values and types. The latter allows
piecewise verification of values that cannot be registered.

The approach tries to be “pythonic”: it adds type–related
metadata to programs that can be used at run–time; it is optional,
and builds on existing concepts. As with ABCs, correct use is
not enforced by a static type system; no attempt is made to re-
solve conflicting specifications.

At the less pythonic extreme, the library also supports method
overloading with dynamic dispatch and type–checking of func-
tions via decorators.

1Abstract Base Classes
2Domain Specific Language.
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Introduction
Some languages have static type systems, letting the compiler
check for errors before the program is run. Often, in languages
like Java, this seems more of a hindrance than a help; many peo-
ple prefer Python for the freedom associated with a lack of type
declarations.

But other languages — like Haskell and Scala — are using
types in interesting ways. And even in Python we sometimes use
commands like isinstance() and issubclass().

So there are interesting questions to explore:

1. How do types currently work in Python? People
often talk about classes as if they are types; more
recently Python has gained ABCs. How do they fit
together with “duck typing”?
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2. Many “modern” uses of types are based on clean,
orthogonal ideas. How do these fit with the data
structures provided by Python? How do they fit with
the existing support for types?

3. What core functions are needed in a library that ex-
tends Python’s types? Instead of saying exactly how
to do something, types gives us a way to describe
what the results should look like. So, for example,
how could we extend types so that it is easy to use
them to write a library that can convert JSON data
to a given set of Python classes?

Roadmap
In the first section, Current Status, I sketch Python’s runtime type
support. This shows how ABCs provide a clear, general model
for duck typing.

The next section, Discussion, explores how new ideas can be
added to Python. For example, we might extend the Sequence
ABC, using Sequence(int) to describe sequences of integers.
“Parametric ABCs” like this could support registration of in-
stances as well as classes; for mutable containers that do not sup-
port hashing (and so cannot be registered) introspective, struc-
tural verification could be an option3:

>>> isinstance([1,2,None,4], Sequence(Option(int)))
True

A concrete implementation of all this (and more!) is de-
scribed in The Pytyp Library (and Appendix: Further Details).

Finally, in Conclusions, I review the most import lessons
from this work.

Terminology
Many terms used to discuss types have meanings related to the
static verification of program properties. In this paper I am ad-
dressing a different subject. This means that I will often use the
word “type” in a poorly defined way. When I need more preci-
sion I will use “(static) type system” (about which one can reli-
ably reason without executing code), “type specification” (meta-
data using ABCs to describe Python data), and “duck types” (a
model of runtime behaviour using available attributes).

Current Status
Python does not have a type system4, but the language does have
a notion of types.

3This particular example is not a valid pytyp specification. For practical
reasons (the need to introduce a new metaclass, and the difficulty in modifying
existing ABCs) the final library uses Seq(Opt(int)).

4In the sense defined in Terminology.

Classes and Attributes
The principal abstraction for structuring Python code is the class.
This specifies a set of attributes (directly and through inheri-
tance) for classes and their instances (objects). The class as-
sociated with an object is universally referred to as its type and
available at runtime via the type() function5.

However, the attributes associated with an object are not fixed
— it is possible to modify objects through various mechanisms
(including metaclasses and direct manipulation of the underly-
ing dictionaries) — and the language runtime does not use the
object’s class to guide execution6. Instead, each operation suc-
ceeds or fails depending on whether any necessary attribute
is present on the instance in question.

Even so, the notion that an instance’s type is its class, and
that this describes how it will behave, is very useful in practice:
experienced Python programmers still describe the behaviour of
programs in terms of types and classes. This is because Python’s
extreme flexibility, although useful and powerful, is rarely ex-
ploited to the full.

Duck Typing
Some operations appear specific to certain class instances. For
example, the function float() only works for numerical types
(or strings that can be interpreted as numerical values). But such
examples can generally be explained in terms of attribute ac-
cess via “special” methods (in the case of float(), the method
__float__() on the function’s argument).

I do not know if every operation can be explained in terms
of attributes, but my strong impression is that this is the inten-
tion: Python’s runtime behaviour can be modelled in terms
of attribute access. In this way it implements (and defines) duck
typing.

Recent Extensions
Recent work extended the language in two interesting ways.

First, it addressed the conflict described above: on the one
hand, programmers behave as though Python’s behaviour can
be reliably explained in terms of types; on the other, the runtime
functions in terms of available attributes. Abstract Base Classes
(ABCs) resolve this by identifying collections of attributes,
providing a class–like abstraction that is better suited to duck
typing.

In more detail: a programmer can identify a set of attributes,
create an ABC that contains these, and then either subclass, or
call the register() method, to associate a class with the ABC.
The metaclass for ABCs, ABCMeta, modifies the behaviour of
isinstance() and issubclass() to expose this relationship
at runtime.

It is important to understand that Python does not support the
runtime verification of arbitrary duck types7:

5Where it matters, I am discussing only Python 3.
6Except for immutable types, which exist partly so that the implementation

can make such an assumption and so operate more efficiently.
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>>> class MyAbc(metaclass=ABCMeta):
... @abstractmethod
... def foo(self): pass
>>> class MyExample:
... def foo(self): return 42
>>> issubclass(MyExample, MyAbc)
False

Instead, MyExample must either subclass MyAbc or register
itself, populating a lookup table used by issubclass(). The
ABC acts only as a marker that signals the veracity of the regis-
tered (or subclass) type; it does not perform a runtime check of
the attributes8.

Second, Python 3 supports type annotations. These are meta-
data associated with functions9. For example, the following is
syntactically valid:

def func(a:int, b:str) -> list:
return [a, b]

Type annotations are not interpreted or enforced by the lan-
guage runtime. They are added to the function metadata and
exposed through Python’s inspect package.

When used with ABCs, type annotations associate vari-
ables with type–related metadata.

Summary
A consistent, simple, global model of Python’s runtime type sys-
tem exists. It is called “duck typing” and, as described above,
depends on the availability of object attributes.

Recent work has started to build on this foundation by reify-
ing collections of attributes (ABCs) and allowing metadata (for-
matted in a manner traditionally associated with types) to be
specified on functions. However, ABCs act only as an unveri-
fied marker; runtime checks are restricted to a few special cases.
Nor are type annotations verified.

So ABCs are type metadata; ABCMeta associates type meta-
data with values and provides access to the relationship via
isinstance(); type annotations associate type metadata with
variables. The rest of this paper builds on this.

Discussion

Typed Collections
How can we define the type of a list of values? Or a dictionary?

Answering these questions with tools from the previous sec-
tion would start with the appropriate container ABC. This de-
fines the attributes used to access the data. To define the contents
we could then add type annotations:

7Excepting manual introspection and the “one trick pony” ABCs: Hashable,
Iterable, Iterator, Sized, Container and Callable.

8This isn’t completely true; when used with inheritance it is possible for
ABCs to define abstract methods, which concrete implementations must supply.

9Python documentation calls them “function annotations”, but the use cases
in PEP3107 all refer to types.

class IntSequence(Sequence):
def __getitem__(index) -> int:
return super().__getitem__(index)

...

This has some problems10, but is, I hope, a fair extrapolation
of Python’s current approach.

One problem is easy to fix. We can define a simpler syn-
tax: [int] or, more formally, Seq(int). I will call this a type
specification.

This can be extended to inhomogeneous collections: dictio-
naries would look like {’a’:int, ’b’:str}; tuples like (int,
str). A unified syntax is Rec(a=int, b=str) or Rec(int,
str) (named arguments are assumed to be string keys; unnamed
arguments have implicit integer indices: 0,1,2...).

But we have a problem: the step from sequences to maps
was more significant than a simple change of syntax. When we
try to translate Rec() back into ABCs with type annotations
we find that we need dependent types. The type of the return
value from __getitem__(key) depends on the argument, key.

Nice syntax; shame about the semantics.

Semantics

To improve the semantics we must consider how a type specifi-
cation is used. For example, we might intend to enforce runtime
checking of function arguments, or to specify how data can be
transcoded.

On reflection (and experimentation) I can find three broad
uses for type specifications: verification; identification; and ex-
pansion.

Verification of a value’s type (against some declaration) is
traditionally performed by isinstance() and issubclass().
ABCs provide a mechanism for extending these, but still need
an implementation for typed collections. We might examine
the value structurally, comparing it against the type specification
piece by piece. This approach is best suited to “data” types (lists,
tuples and dictionaries) which are used in a polymorphic manner.
Alternatively, we can use the existing registration and subclass
mechanisms, which are more suited to user–defined classes.

Identification of a collection’s type, although superficially
similar to verification, is a harder problem. There is not always
a single, well–defined answer. In some simpler cases we may
have a set of candidate types, in which case we can verify them
in turn, in other cases the instance’s class may inherit from one
or more ABCs. But I don’t see a good, “pythonic” solution to
the general problem. So this work does not extend type() to
include typed collections.

Iteration over a collection by type covers a variety of uses
where we want to process data in a manner informed by the as-
sociated types. One example is to automate mapping between
dict and user–defined classes. Another is the structural type

10It is verbose, particularly when all methods are defined; type annota-
tions don’t exist for generators http://mail.python.org/pipermail/python-3000/
2006-May/002103.html; it is unclear how to back-fit types to an existing API;
type annotations are not “implemented”; it supports only homogenous sequences
(as is normal with current type systems).
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verification mentioned above. Handling ambiguous sum types is
the most challenging point here.

Setting identification aside, we seem to have two possible
semantics: one based on registration and subclassing of ABCs;
the other iteration (similar to catamorphism or “folds”).

A Little Formality
I will now explore how type specifications are related to various
concepts from type theory. The aim here is not to directly emu-
late other languages, but to use common patterns to structure our
approach.

Parametric Polymorphism

Since we started with data structures we have already addressed
this: Seq(x) is polymorphic in x, for example. However, it is
worth drawing attention to an important point: polymorphism
occurs naturally in Python data structures at the level of
instances, not classes. This contrasts with the current use of
ABCs, which is at the class level.

So the idea that isinstance([1,2,3], Seq(int)) eval-
uates as True implies a significant change to the language se-
mantics: isinstance() depends on the state of an instance as
well as its class. The relationship between isinstance() and
issubclass() also shifts: the former cannot be expressed in
terms of the latter (alone).

Product Types

The handling of maps above — Rec(a=int, b=str)— is close
to the concept of product types: a record with a fixed number of
values (referenced by label or index), each with a distinct type.

But there are some problems relating this to Python:

∙ The Mapping ABC does not include tuple or list, al-
though these can be used as products.

∙ The dict class (and list, which can also function as a
product, indexed by integers) has a variable number of en-
tries. So Rec() should include a way to specify a type for
“other” values.

∙ Class attributes look like products, but use __getattr__()
rather than __getitem__().

The final point can be addressed with a new specification,
Atr()11. To avoid the need to specify all attributes on a class,
Atr() should be open to additional entries (unlike Rec(), which
is closed unless a default type is specified).

So Python appears to have two product types12; one associ-
ated with __getitem__(), Rec(); and one with __getattr__(),
Atr(). Neither is closely associated with an existing ABC.

11Atr() has an advantage over Rec(): it does not require dependent types
when reduced to ABCs with type annotations because each attribute would be
described separately and so could have its own type.

12In comparison, Javascript’s approach to attributes would require only a sin-
gle type.

Sum Types

Although no Python feature maps directly to sum types — a
value drawn from a set of types — there are various related ideas:

∙ Using None to indicate a missing value.

∙ The use of conditional code that either tests types — eg.
if isinstance() — or returns multiple types from a
single function.

∙ Subclassing and method dispatch.

This suggests a relationship between sum types, condition-
als and dispatch; something that will become clearer in pytyp’s
support for dynamic dispatch.

Because type specifications are metadata (and not a type sys-
tem) we will not “know” the current type for a value associated
with a sum. Iteration must attempt each possible type in turn,
until one succeeds. With nested types this becomes a depth–first
search over value / type combinations that backtracks on failures
related to type errors.

I will use notation Alt(a=int, b=str) to describe sum
types below. The optional labels might be used for dispatch by
type, with a case–like syntax, for example.

Types as Sets

Types can be considered as [predicates that define] sets of val-
ues. This suggests two more type specifications: And(), which
defines a type as the intersection of its arguments (so And(My-
Class, Seq(int))would be the instances of MyClass that are
also integer sequences); and Or() which is the union. Other set
operations are possible, but don’t appear to be very useful in
practice13.
Or() is similar to Alt()14; the difference is the ability to

name alternatives, which means that Alt() is not associative,
while Or() is.
And() is similar to multiple inheritance. Creating a new type

specification using a combinator rather than inheritance simpli-
fies the implementation and feels more natural (to me).

Summary
This section introduced a syntax that can describe polymorphic,
algebraic data types (roughly translated into Python’s runtime
context) within Python code, largely at the instance level:

Seq(a) # Sequences of type a

# products
Rec(a,b,...) # Type a x b x ... via __getitem__ or []
Atr(a,b,...) # Type a x b x ... via __getattr__ or .

# sums

13An argument could be made for Not(), particularly when using dynamic
dispatch.

14And() and Or() parallel the product and sum types in structural verification
and so share common ancestors in pytyp.
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Alt(a,b,...) # Type a + b + ...
Opt(a) # Alias of Alt(value=a,none=type(None))

# sets
And(a,b,...) # Type a n b n ... (intersection)
Or(a,b,...) # Type a u b u ... (union)

In addition, because the specifications above are built using
classes, we need a syntax to distinguish classes used as types15

and another to allow dispatch by type (see Dynamic Dispatch by
Type below):

Cls(c) # Instances of c
Sub(c) # Subclasses of c

Relating the semantics for these type specifications to ex-
isting language features is more difficult. In particular, adding
type annotations to ABCs faces significant problems. First,
it is incomplete: attributes, generators and named tuples do not
support annotations. Second, dependent types would be needed
to handle dict. Third, it is verbose, particularly when using
standard container classes which must be subclassed for every
distinct use, but also because it ignores correlations between the
types of different attributes.

Registration with ABCs (or subclassing) is more promising,
but cannot handle all cases, even if extended to include instances;
a general solution will also require a structural (piecewise in-
spection) approach.

The Pytyp Library
The previous section explored a variety of ideas. Now I will
describe an implementation: the pytyp library.

ABCs
Pytyp provides “parametric ABCs”. So, for example, Seq(int)
is a call to the type sequence constructor Seq that returns a dy-
namically generated ABC representing sequences of integers.
The ABC is cached in Seq so that subsequent calls with the same
type argument receive the same instance.

Like ABCs that already exist in Python, you can subclass
Seq(int), or register a class. In addition, you can also register
hashable instances:

>>> ilist = HashableList(1,2,3)
>>> Seq(int).register_instance(ilist)
>>> isinstance(ilist, Seq(int))
True

Class Hierarchy

The full class hierarchy is shown below (subclassed or registered
to right; Sequence, Container and Mapping are all existing
Python ABCs):

15In pytyp this use of Cls() is optional in most cases; bare classes in type
specifications will be automatically coerced to Cls(...).

Product
+- Sequence
| ‘- Seq -- Seq(*) +- Seq(X) # Sequences (like [])
| +- X in Sequence.__subclasses__
| ‘- tuple
+- Container
| ‘-Rec -- Rec() +- Rec(X) # Records (like {})
| +- X in Mapping.__subclasses__
| ‘- tuple
+- Atr -- Atr(X) # Attributes (like A.b)
‘- And -- And(X) # Intersection

Sum
+- Alt -- Alt(X) # Alternatives
| ‘- Opt -- Opt(X) # Optional (or None)
‘- Or -- Or(X) # Union

Cls -- Cls(*) -- Cls(X) # Class

None of the ABCs have abstract or mixin methods. Foo(*)
implies a default object argument, so Seq() is equivalent to
Seq(object).

Several additional classes modify behaviour. Classes with
NoNormalize as an immediate superclass are considered to be
type specifications during normalisation; other classes will be
wrapped by Cls(). NoStructural identifies classes that in-
herit from type specifications and so do not need structural veri-
fication. Subclasses of Atomic are displayed without the Cls()
wrapper.

Construction and Inheritance

Cls(X) is the type specification for class X. It is not always
needed (eg. Seq(int) and Seq(Cls(int)) are equivalent),
but removes ambiguity when using classes that are themselves
type specifications. For an example, consider the difference be-
tween Seq(int) and Cls(Seq(int)): the former represents a
sequence; the latter represents the class Seq(int).

Unfortunately, this leads to a problem: if the subclass rela-
tion is transitive then we cannot reliably test for the types of type
specifications. Consider the following:

1. issubclass(Cls(X), Cls)

2. issubclass(X, Cls(X))

3. issubclass(X, Cls)

[1] is true because we sometimes need to group parame-
terised types by “family” (eg. we need to be able to test whether
a sequence of some type is a sequence, rather than a record).

[2] is true from the meaning of this particular type specifi-
cation and the usual relationship between isinstance() and
issubclass() (eg. both isinstance(42, Cls(int)) and
issubclass(int, Cls(int)) are true).

[3] would be true if issubclass() were transitive. This is
traditionally the case for any value of X, including object itself.
So any class can be a subclass of Cls.

There is a conflict between “is X a type within the type speci-
fication Y?” and “is X a type specification of type Y?” To address
this the library has the following structure:
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∙ Type Specification Constructors (eg. Cls, Seq) are ordi-
nary classes whose __new__ methods act as factories for
type specifications.

∙ Type Specifications like Cls(X) and Seq() are16 dynam-
ically created classes, cached in the type constructor by
type arguments, that have a TSMeta metaclass.

∙ Type Specification Metaclass (TSMeta) is a subclass of
ABCMeta that extends registration to include instances, adds
iteration and structural verification, etc.

This isolates the “magic” used to implement [2] (the logic in
ABCMeta and TSMeta that isinstance() and issubclass()
delegate to, and which is extended to make parametric polymor-
phism possible).

In summary: issubclass(X, Cls) asks if X is a subclass
of the Cls constructor; issubclass(X, Cls()) asks if X is de-
scribed by the specification Cls()17. The first is resolved using
normal Python subclassing; the second includes modified logic
from ABCMeta and TSMeta. Since only the latter includes the
support for parametric polymorphism we lose the unwanted tran-
sitivity.

This solution does not address the case where a type specifi-
cation is subclassed, but those will be proper subclasses that are
unlikely to be confusing during dispatch by type.

Instance Registration

Pytyp extend ABCs with an additional registry, for instances,
populated by the register_instance() method.
TSMeta extends __instancecheck__(), called by isinst-

ance(), to delegate to __instancehook__() on the class, if
present. This parallels the use of __subclasshook__() within
__subclasscheck__() (the standard ABC type extension mech-
anism).

Type specifications then implement __instancehook__()
to check instances against the registry.

Structural Type Verification

Neither inheritance nor registration will help verify a list of in-
tegers, [1,2,3]: subclassing is not useful (list already exists,
and anyway we need this to work at the instance level) and reg-
istration fails (the value cannot be hashed).

In cases like this we must fall back to structural verification:
each entry is checked in turn (the mechanism is described in the
next section, Iteration). This is inefficient, of course, so the pro-
grammer must consider whether it is appropriate. The alternative
is a custom subclass:

>>> class IntList(list, Seq(int)): pass
>>> isinstance(IntList(), Seq(float))
False

16More exactly, “return”.
17An instance of any class — Cls() is equivalent to Cls(object)— so the

result is True.

Iteration
Iteration allows the type specification to guide processing of data.
Each type specification implements _for_each(data, call-
back) and _backtrack(data, callback). These both pass
callback the current type specification and a generator that
supplies (value, spec, name) for each sub–component of
data.

So, for example, the call Seq(int)._for_each([1, 2,
3], callback) will provide callback with a generator that
contains each list entry, in order, with a spec of int. In this
case name will be None, but for Rec(), say, it will name the
record.

The callback can recursively call _for_each() or _back-
track() on any sub–specifications, allowing the entire data struc-
ture to be processed.

The two methods differ in how they handle sum types (which
have multiple possible types for a single value).

For Each

_for_each() passes callback each combination of type and
value. For product types callback receives each value once,
with a type; for sum types it receives each value multiple times,
with a different type each time.

The callback must then handle the two cases appropriately.
For example, the following code would implement structural
type verification:

def callback(current, vsn):
if isinstance(current, Product):
for (value, spec, name) in vsn:

if not isinstance(value, spec):
return False

return True
else if isinstance(current, Sum):

for (value, spec, name) in vsn:
if isinstance(value, spec):
return True

return False

I have omitted many details, including the way that this would
be called by isinstance(), but you can see how each case is
handled separately.

Backtrack

In many cases, iteration over sum types means trying each type
in turn until one works. For nested sum types this gives a depth
first search of the possible value / type combinations. The _back-
track() routine makes this explicit: failure is indicated by rais-
ing an exception; the exception is caught and the next alternative
tried.

In this approach, callback() receives only a single type for
each value in a sum (other types are tried on alternative calls, if
an exception is raised). The code for structural type verification
becomes
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def callback(current, vsn):
for (value, spec, name) in vsn:

if not isinstance(value, spec):
raise TypeError

return True

which is simpler than above because the logic for handling sum
types is moved to _backtrack() itself.

Dynamic Dispatch by Type
Type specifications are metadata, implemented as ABCs, that
can make APIs more declarative. Libraries that take this ap-
proach, like the JSON support in pytyp, must read and respond
to that metadata. Unfortunately, this can result in code littered
with calls to isinstance() and issubclass().

The relationship between object types and program logic is
usually implicit: OO method dispatch selects the correct action
without explicit tests (the called method will have multiple im-
plementations, depending on the type).

But this not possible with type specifications — it implies
calling class methods on the ABCs themselves — so an alter-
native dispatch mechanism is needed. I have found dispatch by
type, implemented as a decorator, to be extremely useful in these
cases.

Here is a fragment of code used to encode data as JSON

class Encoder:

@overload
def __call__(self, value):
return value

@__call__.intercept
def object(self, value):
try:
argspec = getfullargspec(init)

except TypeError:
return self.object.previous(value)

...

@__call__.intercept
def list(self, value:Sequence):
return list(map(self.recurse, value))

@__call__.intercept
def map(self, value:Mapping):
return dict((name, self.recurse(value))

for (name, value) in value.items())

which illustrates how the decorator is used. All the methods
shown are accessed by calling an instance of Encoder as a func-
tion; ie. via __call__(). This works as follows:

∙ The target method (and default implementation) is marked
with @overload.

∙ Other methods, one of which may be called instead of the
target, are marked with .intercept. Methods are tried
“from bottom to top”; arguments are checked against type
annotations and the first successful match is invoked.

∙ Methods can explicitly pass the call up the chain by calling
.previous() on the current method (see the object()
method above).

The previous example, chosen for compactness, tests instances.
When working with type specifications (ABCs) it is also useful
to test subclasses. This explains the Sub() (pseudo–)type spec-
ification. For example,

@__call__.intercept
def rec(self, value, spec:Sub(Rec)):
....

will be invoked when the spec argument is a subclass of Rec—
a type specification for a record.

Examples
The following examples build on the support for types described
above to provide useful functionality.

Type Verification

The checked decorator verifies parameters and return values
against the specification in the type annotation:

>>> @checked
... def int_list_len(s:[int]) -> int:
... return len(s)
>>> int_list_len([1,2,3])
3
>>> int_list_len(’abc’)
Traceback (most recent call last):
...

TypeError: Type Seq(int) inconsistent with ’abc’.

JSON Decoding

Here JSON data, expressed using generic data–structures, are
decoded into Python classes. Type specifications — in the call to
make_loads() and via an annotation on the Container() con-
structor — are used to guide the decoding (implemented through
nested iteration, as outlined earlier):

>>> class Example():
... def __init__(self, foo):
... self.foo = foo
... def __repr__(self):
... return ’<Example({0})>’.format(self.foo)
>>> class Container():
... def __init__(self, *examples:[Example]):
... self.examples = examples
... def __repr__(self):
... return ’<Container({0})>’.format(
... ’,’.join(map(repr, self.examples)))
>>> loads = make_loads(Container)
>>> loads(’[{"foo":"abc"}, {"foo":"xyz"}]’)
<Container(<Example(abc)>,<Example(xyz)>)>
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Conclusions
I have shown how type specifications — metadata using param-
eterised ABCs to describe Python data at the class and instance
level — can be expressed within Python18. I have also provided
an implementation with three operations: registration / subclass-
ing; structural type verification; iteration.

Registration / subclassing and structural verification are com-
plementary. The former allows classes and instances to be reg-
istered with, or inherit from, type specifications. This gives effi-
cient verification of types. The latter is less efficient, but extends
verification to mutable containers that cannot be registered. If
performance is critical users can subclass and extend existing
collections to make more efficient, registered classes.
Pytyp provides function decorators that verify arguments

and implement dynamic dispatch by type.
Iteration is a general mechanism that can recursively explore

a collection and the associated type specification. Because type
specifications are not part of a static type system the concrete
type of a value identified with a sum (ie. ambiguous or alter-
native) type is unknown; iteration must therefore support back-
tracking over the different possible combinations. This can be
left to the client, or supported within the library.
Pytyp uses iteration to provide structural verification of types

and the guided conversion of JSON data to Python classes.
Type specifications can help make APIs more declarative,

but implementations must then be driven by the metadata. The
resulting code is improved with dynamic dispatch by type, im-
plemented as method decorators in pytyp.

Pythonic
The final decision on whether code is “pythonic” can only come
from the community. And I suspect that they will not, in general,
be supportive of the idea of “adding types” to Python.

However, the work described here does not implement, or
advocate, a static type system. Instead, it builds on ideas al-
ready present in the language — ABCs, type annotations, is-
instance() — to add optional features that respect the lan-
guage semantics. For example, Rec(int, str) can describe a
dict with keys 1 and 2, a tuple, a even a list of length 2; no
structure is imposed on the user beyond the attribute–based pro-
tocol (__getitem__() in this case) that already exists in the
language.

Issues in Python
Type specifications describe parts of the Python language in a
semi–formal way. So they highlight inconsistencies. That spec-
ifications are possible at all implies that Python is already a reg-
ularly structured language, but some irregularities have surfaced
and I will describe them below.

18Implemented as an embedded, domain–specific language (EDSL).

Type Annotations

When developing pytyp my initial intention was for type speci-
fications to be syntactic sugar that add type annotations to ABCs.
This would make the type parameters explicit. Instead, the cur-
rent implementation stores the parameters internally.

So type annotations are less central to this work than I ex-
pected. This is largely because generators — which are par-
ticularly important for collections — do not allow for type
annotations. Which makes it difficult to extend ABCs with an-
notations in a consistent way.

The significance of the need for dependent types, when de-
scribing Rec() with ABCs and type annotations, is debatable.
While type specifications are expressed in the language this may
not be a serious problem (dependent types can be implemented
as Python functions), but it might constrain future options to im-
prove efficiency.

It’s also worth noting that annotations are obscured by func-
tion decorators, although functools.wraps provides a __wrap-
ped__ attribute that can be used to chain to the original function.

Named Tuples, ABC Granularity

Named tuples are interesting because they so closely correspond
to product types. Yet they are “bolted on” to the language and
do not support type annotations. They also, confusingly, re-
late a Rec() over integer keys to an Atr() over different at-
tribute names; more useful would be a relationship using the
same names (ie. as between an object and the underlying dic-
tionary). Pytyp provides record() for this.

A related issue is seen in the granularity of existing ABCs:
there is no abstraction between Container and Mapping /
Sequence for __getitem__() and __setitem__(). This mud-
dies the connection between existing ABCs and product types.

Mutability

The idea of mutability in Python becomes more nuanced with
the possibility of collections that have fixed types.

Mutability of an individual value in a collection is not ad-
dressed by the schema described here. In practice, Python’s
tuple type is immutable and can be used for both Seq() and
Rec() (integer labels), while namedtuple also supports Atr().

Type specifications do constrain the type or number of val-
ues in a container. User defined classes can support mutable
values, while keeping fixed types, by verifying the input types.
Pytyp provides the checked decorator to enforce type annota-
tions. Curiously, Python does not have a mutable collection of
fixed size. Again, record provides this in pytyp.

Registration of instances by TSMeta uses the Python hash.
Strictly, only the number and type of the contents (and not the
values themselves) should be used. But requiring a separate hash
for types is over–ambitious.

More generally, functional programming suggests that ac-
curately tracking mutability is important, but the runtime infor-
mation for mutable types in Python is muddled: Sequence and
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MutableSequence are distinguished by the addition of __set-
item__(); the behaviour of mutable structures in Python de-
pends on the absence of __hash__() and __eq__(). The pytyp
library emphasises the latter; Seq is an ugly amalgam of the two
ABCs that switches to structural verification when registration is
impossible (ie. for unhashable instances).

Copy on write data structures1920 suggest an interesting way
to address this issue. Their nature makes it easy to detect and
record mutation. So hashing of mutable structures could be al-
lowed, but “immutable references”, in a similar way to weak
references, would expire when the data change. This would re-
move, or at least reduce, the need for inefficient, structural veri-
fication of types.

AttributeError is a TypeError

In the context of duck typing, AtrributeError should be a
subclass of TypeError. Or vice–versa?

Additional Issues in Pytyp
Efficiency

The issues above also affect pytyp. In addition, as with any
pure–Python solution, there is a question of efficiency. For the
occasional type check when debugging this is not an issue, but
some of the features described are unsuitable for use across a
Python application (eg. ubiquitous verification of type annota-
tions).

How could performance be improved if some functionality
was moved to the language run–time? What would minimal sup-
port require? Perhaps caching would be simplified by allowing
arbitrary tags on (all) values? Is there a need for an intermediate
conceptual level, between instances and types, that is somehow
related to state? Are there useful parallels between type verifica-
tion and the “unexpected path” handling of a JIT compiler?

Not a Type System

Pytyp is not a type system; it does not support static rea-
soning about program correctness. It is only a library for ex-
pressing and interpreting metadata at run–time. This fits within
the Python ethos, but means, for example, that inconsistencies
and errors are not flagged to the user, nor is the current type
known for a value that has several alternatives (sum types). The
last point implies that type–guided iteration over data requires
backtracking when inconsistencies are found.

One way to move pytyp closer to a type system would be to
add type inference. This could be a function, called at runtime,
that uses type annotations to connect different type specifications
together. For example, it could answer questions like “if I call
function X with types Y and Z, what will the type of the result
be?” The additional information Y and Z may help constrain the
type of the result (resolving sum types, for example).

19http://pypi.python.org/pypi/blist
20http://www.python.org/dev/peps/pep-3128/

Negative Cache

ABCMeta contains both a class register and a negative cache (the
cache tracks classes that are known not to be subclasses). TSMeta
is a minimal extension of that code, which adds a register for in-
stances, but does not include a corresponding negative cache. It
is possible that a more careful implementation would be more
efficient.

Inheritance, Types as Sets

No attempt is made to resolve multiple inheritance of type
specifications. And() will merge the structural verification, so
inheriting from And(X,Y) is preferable to subclassing both X
and Y separately21.

It has already been noted (in Types as Sets) that Or() is very
close in meaning to Alt(). Since And() is similar to inheritance
it may be better to drop both. This would simplify the library,
but make it harder to use: the DSL approach to describing data
is compact and readable; requiring the user to define new classes
instead of writing And() would make it much more intrusive.
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Appendix: Further Details

Abbreviations and Normalisation
Pytyp supports the “abbreviated” syntax described above, but
the normalize() function may be necessary when used in con-
texts that require a subclass of type:

>>> isinstance([1,2,3], normalize([int]))
True
>>> normalize([int, str])
Rec(int,str)

Optional Records
Optional records can be specified with a leading double under-
score22, which can be useful mapping between dict and func-
tion parameters (default values make certain names optional):

>>> isinstance({’a’:1}, Rec(a=int, __b=str))
True
>>> isinstance({’a’:1, ’b’:’two’},
... Rec(a=int, __b=str))
True

Similarly, a double underscore with no following name indi-
cates a default type for additional values:

21The same logic might be implemented in the TSMeta metaclass.
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>>> isinstance({’num’:42, ’a’:’foo’, ’b’:’bar’},
... Rec(num=int, __=str))
True

To avoid syntax–related restrictions, Rec() can take a dict
as a direct argument, via the _dict parameter. Rec.OptKey()
can then mark optional records:

>>> isinstance({1:1},
... Rec(_dict={1:int, Rec.OptKey(’b’):str}))
True

Class and Attributes Shorthand
The Cls() constructor provides a shorthand for specifications
that include a class and attributes:

>>> class Foo:
... def __init__(self, x):
... self.x = x
>>> isinstance(Foo(1), Cls(Foo, x=int))
True
>>> isinstance(Foo(’one’), Cls(Foo, x=int))
False
>>> Cls(Foo, x=int)
And(Cls(Foo),Atr(x=int))

Circular References
These are defined using Delayed() which allows references to
a type before it is known:

>>> d = Delayed()
>>> d.set(Alt(int, d, str))
>>> d
Delayed(Alt(int,...,str))

Isinstance() will raise a RecursiveType exception on
recursive verification of a recursive type; typically this is handled
by backtracking in Alt().

Record
In a similar manner to namedtuple(), the function record()
extends dict to construct classes that implement both Rec()
and Atr(), providing unified access to named values:

>>> Simple = record(’Simple’, ’a,b,c=3’)
>>> simple = Simple(1,’two’)
>>> simple.b
’two’
>>> simple[’c’]
3

>>> Typed = record(’Typed’, ’a:int,b:str’, mutable=True)
>>> typed = Typed(1, ’one’)

22It is hard to find something that is readable, an acceptable parameter name,
and unlikely to clash with existing code.

>>> typed.a = 2
>>> typed[’a’]
2
>>> typed.b = 3
Traceback (most recent call last):
...

TypeError: Type str inconsistent with 3.

>>> StrTuple = record(’StrTuple’, ’:str,:str’)
>>> stuple = StrTuple(’foo’,’bar’)
>>> stuple[0]
’foo’
>>> stuple._1
’bar’
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