A Simple, Lazy, Expression Evaluator

Andrew Cooke*

August 2006

Abstract

I explain the motivation for, design of, and experience
using a simple domain-specific language in Java.

Contents
1 The Problem 1
1.1 The Remediation Service 1
1.2 Remediation Actions 1
1.3 Configuration via Programs 2
2 The Solution 2
2.1 Domain Specific Languages 2
2.2 Design Choices 2
2.3 Parsing 2
2.4 Evaluation. 3
2.5 Generics, Reflection 3
2.6 Examples 3
2.6.1 The ‘If’ Function 3
2.6.2 Basic Actions 5
3 Conclusions 6
3.1 Experience 6
3.2 Optimisation 6
3.3 Philosophy 6

1 The Problem

1.1 The Remediation Service

The NOAO DMaSS (Data Management and Science
Support) platform includes a Remediation Service.
Separate instances of this service can be individually

*andrew@acooke.org

configured to perform fairly complex ‘processing’ of
textual data. For example, one might be used to con-
struct values for a general science data model given
data from instrument-specific FITS headers! for dif-
ferent instruments.

The Tiny Workflow[1] provides a suitable frame-
work for configuring remediation. Continuing with
the example above, it would allow different ‘flows’ to
be defined for each instrument, selecting the appro-
priate flow depending on the science data received.

Data within the remediation workflow are repre-
sented as name/value pairs. A simple library (sim-
ilar to Java’s Properties class) supports this ab-
straction, adding immutable values (both per-value,
to protect system data, and per-collection, to allow
more efficient processing).

Given this framework, the work of implementing
the remediation service was reduced to writing var-
ious ‘actions’ that, when appropriately configured,
modified the workflow data.

1.2 Remediation Actions

Initial analysis suggested that a sufficiently flexible
system could be constructed from a set of very simple
actions:

e Require that a given set of properties (names) is
present.

e Rename a set of properties.

e Provide default property values.

LFITS headers contain astronomy image metadata in a sim-
ple name/value format.

e Rewrite property values using regular expres-
sions.

These different actions could be composed within
the workflow (which included the ability to test for
values by evaluating XPath expressions against an
XML representation of the properties) to construct
progressively more complex procedures.

Although these simple actions were easy to imple-
ment and configure individually, two problems soon
became clear.

First, the Spring workflow configuration exploded
into a mass of unsightly XML. I consider myself
XML—tolerant, but felt that the verbosity involved
in configuring non-trivial processes was excessive.

Second, I had forgotten the need to concatenate
values. While this could be fixed this with another
action, I was concerned that the set of actions was
going to continue to expand, making configuration
even more complex and opaque.

1.3 Configuration via Programs

One solution to the problems described above is to
provide a single, more powerful ‘general action’ for
processing data — ie. provide access to a program-
ming language. The configuration for the action then
becomes a small program in its own right.

Various languages are available to provide ‘script-
ing’ in Java (e.g: Groovy; Javascript in the next ma-
jor JDK release). However, these might cause further
problems.

Introducing a general language provides a lot of
(unnecessary) functionality at one point in a layered
architecture. There is a temptation to use it to solve
unrelated problems. For easy maintenance/operation
I would like to restrict the functionality available.
For example, high—level control should remain in the
workflow rather than being implemented in the same
script used to manipulate values?

There is also a cost involved in using external pack-
ages. This is typically dismissed as unimportant com-

2] later realised that the workflow is closely related to in-
formation in the Vocabulary Service[2]; this separation helped
us exploit that commonality.

pared to the ‘obvious expense’ of implementing a lan-
guage from scratch. However, I felt otherwise.

2 The Solution

2.1 Domain Specific Languages

In recent years there has been an explosion of interest
in Embedded / Little / Domain Specific Languages
(DSLs), particularly in the functional language pro-
gramming community. This ‘movement’ has recog-
nised that:

e Implementing a simple language is not difficult
or expensive.

e Languages targeted at particular problems make
good user interfaces.

e Careful language design can make the interface
easy to control (it can be as restrictive or exten-
sible as needed).

Although much of the literature emphasises the
(undeniable) advantages of functional programming
languages in supporting this paradigm, I felt that a
similar approach should also be possible in Java.

2.2 Design Choices

A typical DSL builds on existing language support
(e.g. combinator libraries, macros) or uses a dedi-
cated recursive descent parser. Unfortunately, nei-
ther of these approaches would work in this case:
Java does not have simple runtime compilation or
the kind of features (e.g. high order functions) neces-
sary for embedding; a typical hand-written recursive
descent parser would be tediously verbose.

I considered using a parser library (GI[3] is very
nice) but instead decided that it would be simpler
to use a prefix syntax (like Lisp / Scheme) whose
parsing is trivial.

Initial requirements involved only function evalu-
ation. Ignoring function and variable definition re-
moved the need for scoping or mutable data. Nor

did I need support for lists (at first this seems irrel-
evant, given the syntax, but it simplifies parsing by
eliminating quotation).

However, some control flow was necessary. Learn-
ing from the behaviour of ‘?:” (taken from C language
syntax) in some IRAF[4] tasks, which evaluates both
sides of the branch, it seemed simplest to avoid such
problems by using lazy evaluation (terms are calcu-
lated only as they are required).

T also chose untyped semantics (a.k.a. ‘dynamic’
or ‘tagged’ types), assumed arbitrary dynamic casts,
and did not consider operator overloading.

Examples of the resulting syntax can be seen in
section 2.6.

2.3 Parsing

The design described above is so simple it hardly war-
rants being called a ‘language’ - it is almost identi-
cal to the calculator example (terms and expressions)
given in programming textbooks.

Program text is lexed using a simple state machine
(a single Java class with a case statement over an
Enum state). Single character look—ahead is sufficient;
I used nio.CharBuffer’s ‘mark’ mechanism to pro-
vide this. There is a token for ‘open’, ‘close’, ‘eof’
and each atomic type (including ‘name’ for unquoted
text).

The stream of tokens is assembled into an AST us-
ing a simple recursive descent parser that consumes
tokens and returns AST nodes. This was imple-
mented as a single class (the productions are private
methods). Since the JVM does not have tail call op-
timisation I needed to worry about stack use; it is
proportional to the maximum nesting depth in an
expression which, for the intended use, is not a prob-
lem.

2.4 Evaluation

Evaluation is equivalent to a traversal of the AST,
selecting (evaluating) only those nodes required by
the semantics. This is not explicit in the im-
plementation (there is no tree walker, for exam-
ple). Instead, sub nodes are evaluated via the

Node.evaluate (Namespace) method. Each node im-
plementation is responsible for deciding which child
nodes to evaluate in turn.

Types are identified (‘tagged’) by the subclasses of
the AST Node class. The common superclass guaran-
tees that future extension to include first class func-
tions and lists will be painless (both already exist
as Node subclasses, but the current operational se-
mantics do not expose their dynamic creation to the
user).

Functions and variables are provided via a
Namespace interface. Typically, variables are read
from the Properties interface described earlier,
while functions include a standard collection that
provides basic functionality. There is also an adapter
for eager functions (the user programs to an inter-
face that is provided with pre-evaluated arguments)
so that simple functions for specific applications can
be added without understanding how lazy arguments
are implemented.

2.5 Generics, Reflection

I was pleasantly surprised at the level of integration
possible between the language being implemented
and the Java host. Figure 1 shows almost all the
code necessary to implement literal values, including
the base classes, support for dynamic casts and type
errors, and the implementation class for string liter-
als. Generics and reflection help us write code that
can be used for all (literal) types while also helping
leverage the support for these types in the host lan-
guage.

The dynamic cast method (as) is a good example®.
It is used in the example in figure 2.

For those not familiar with Java, the important as-
pects of figure 1 are that (1) most of the logic for lit-
eral types (everything except type conversions) is in a
single type-safe generic class, Literal; (2) the code
for dynamic type conversions is statically checked and
type-safe; (3) the runtime check for type errors (in

3 Although this implementation makes the addition of later
‘third party’ types difficult, since casts are encoded in each
source class; a ‘from’ approach would be better, but with an
uglier syntax, if this kind of extension were an important re-
quirement.

public abstract class BaseNode implements Node {

public abstract Node evaluate(Namespace namespace) throws Exception;
public <Cast extends Node> Cast as(Class<Cast> clazz) throws TypeException {
if (clazz.equals(StringLiteral.class)) {
return TypeException.assertType(new StringLiteral(toString()), clazz);
} else {
return TypeException.assertType(this, clazz);

3

public abstract class Literal<Internal> extends BaseNode {

3

private Internal value;

public Literal(Internal value) {this.value = value;}

public Node evaluate(Namespace namespace) throws Exception {return this;}
public Internal getValue() {return value;}

public String toString() {return getValue().toString();?}

public class Stringliteral extends Literal<String> {

}

public Stringliteral(String value) {super(value);}
public <Cast extends Node> Cast as(Class<Cast> clazz) throws TypeException {
if (clazz.equals(BooleanLiteral.class)) {
return TypeException.assertType(new BooleanLiteral(getValue()), clazz);
}else if (...) {

} else {
return super.as(clazz);

3

public class TypeException extends EvaluationException {

public TypeException(String msg) {super(msg);}
public static <Type extends Node> Type assertType(Node node, Class<Type> clazz)
throws TypeException {
if (! clazz.isAssignableFrom(node.getClass())) {
throw new TypeException("Expected " + clazz.getSimpleName()
+ ", but got " + node.getClass().getSimpleName()) ;
3

return clazz.cast(node);

Figure 1: Generic annotations and reflection simplify integration between language and Java host.

the ‘new’ language, not Java) is made in a generic
class (a static member of TypeException) using re-
flection. The ease with which a ‘dynamic’ language
can be implemented in ‘static’ Java is surprising?.

2.6 Examples
2.6.1 The ‘If’ Function

Figure 2 shows the implementation of a function that
is equivalent to an ‘if statement’ in eager languages.
For example

(if false (/ 1 0) (+ 1 2))

will return 3 — there will be no division by zero error
because the if function does not evaluate the second
argument if the first is false (true and false are
parsed as literal boolean values).

The first argument is evaluated, cast to a boolean,
and used to select the first of second argument.
The evaluate method would be called from the s—
expression, which itself implements Node.evaluate
by evaluating the list head (typically a Name whose
Node.evaluate retrieves the function from the
Namespace), casting to a LazyFunction, and pass-
ing the list tail as arguments.

2.6.2 Basic Actions

Section 1.2 listed basic remediation actions. Here I
show how the function evaluator can reproduce that
functionality.

Exceptions in the evaluator are implemented as
Java exceptions in the implementation. The evalua-
tor is structured so that the evaluator automatically
inherits the correct semantics.

Required name
(require namel name?2 ...)

The require function throws an exception if there is
no binding for any of its arguments. If all arguments
are bound it returns () (the empty list).

41 believe similar code would be possible in C#

Rename values

new-name = old-name

The simple evaluator does not bind values, so the
syntax above, and the associated responsibility for
assigning a new value, belong to the calling package.

Default values

name = (default name "value")

The default function evaluates and returns the first
argument. If an exception is thrown during evalu-
ation and the function has a further argument, the
exception is discarded and the next argument evalu-
ated.

Note that only the expression enclosed by () eval-
uated by the library described here. The final assign-
ment to a value is the responsibility of the caller.

Regular expressions

(regexp firstword "“\\sx(\\w+).*" "$1")
(regexp lastword ".*7(\\w+)\\s*$" "$1")
(regexp firstletters "(\w)\w*\sx" "$1,")
(regexp dropcommas "(.*),$" "$1")

firstname = (firstword DTPI)
lastname = (lastword DTPI)
initials = (dropcomma (firstletters DTPI))

Regular expressions are not supported by the eval-
uator, but they show how easy it is for the caller to
add extensions. Here regexp is a function, provided
by the caller, that defines a Perl 5 regular expression
in the caller’s state as a side-effect. The caller then
supplies the compiled expression via Namespace for
the next call to the evaluator.

As before, assignment is the responsibility of the
caller. The caller is also free to schedule evaluation so
that, for example, the regular expressions are defined
only once, when the system starts.

3 Conclusions

3.1 Experience

The initial implementation of this ‘language’ (lexer;
parser; interpreter; unit tests) took about 20 hours

public class If extends LazyFunction {

public Node evaluate(NodelList arguments, Namespace namespace)

throws Exception {
Iterator<Node> args =

arguments.iterator();

if (! args.next().evaluate(namespace).as(BooleanLiteral.class).getValue()) {

args.next();

}

return args.next().evaluate(namespace);

Figure 2: Implementing ‘if’ as a lazy function.

(two 10 hour days). As a result, the configuration for
remediation was simplified significantly, using a tool
whose power is limited, as required, but which could
be easily extended in the future.

A careful choice of syntax and semantics allowed
us to exploit techniques developed (or rediscovered)
with significantly more powerful tools. Implementa-
tion time was short, allowing easy integration into our
iterative (agile) development process. I believe that
many of the approaches emerging from ‘academic’
functional programming (an emphasis on declarative
approaches; little languages; a realisation that pow-
erful modern languages make some heavyweight li-
braries obsolete) fit well with the agile approach.

Embedding a ‘dynamic’ language in ‘static’ Java
was surprisingly easy (section 2.5). Similar ideas can
be seen in the elegant generic form handling within
the Spring MVC framework. In my opinion the power
of generics and reflection are too often overlooked by
Java programmers.

The main drawback to this approach is raw execu-
tion speed. A third party language that compiles to
bytecode would be many orders of magnitude faster.
For this application — evaluating simple expressions
during remediation — this is not an issue; if it be-
comes important later then this solution is, of course,
carefully encapsulated within a small number of in-
terfaces, and easily replaced.

3.2 Optimisation

As an experiment, I modified the system to cache
known results if they were constant. Since I make
no assumptions about purity (in particular, functions
could be implemented to have side effects and vari-
ables mutable) this was not completely trivial; how-
ever, it was simpler than I expected (one evening’s
work).

The modification consisted of: adding Thunk with
the same interface as Node, but the ability to cache
a value; extending NodeList to wrap Node instances
in a Thunk; changing the return type of evaluate
to return both a Node and an indication whether it
could be cached (a signal to the surrounding Thunk);
extending functions to include the necessary logic for
propagating ‘constness’.

In addition, to complete the work, I would have
needed to make a distinction between pure and im-
pure functions, and fixed and mutable variables (not
difficult; this distinction is already present in the
Properties library, but the code there would need to
be made more generic, to handle functions as well as
strings).

This work was discarded, however, because it
seemed (i) too complex for any expected gain (in par-
ticular, intermediate objects were generated and dis-
carded for each evaluation) and (ii) I could not see
how to make the changes either optional or cost—free
when used in an impure context.

3.3 Philosophy

Finally, I also feel that there is a hidden value in work
like this: it gives real pleasure in what is otherwise an
increasingly mechanical and uninvolving profession®.
Happy programmers are better programmers.

References

[1] A. Cooke 2006; A Tiny Workflow in Spring:
http://www.acooke.org/andrew /papers

[2] A. Cooke, A. Egania, S. Lowry 2006; FITS
Files and Regular Grammars: A DMaSS De-
sign Case Study:
http://www.acooke.org/andrew/papers

[3] GI (Generic Interpreter):
http://www.csupomona.edu/ carich/gi/

[4] IRAF (Image Reduction and Analysis Facility):
http://iraf.net

5Populated by technicians who use ‘never re-invent the
wheel’ to justify over—complex solutions with fragile dependen-
cies on rapidly evolving third—party systems; the consequent
lack of knowledge about basic programming techniques makes
their warning a self-fulfilling prophecy.

