
Implementing a Numerical Data Access Service

Andrew Cooke∗

October 2008

Abstract

This paper describes the implementation of a J2EE
Web Server that presents numerical data, stored in a
database, in various graphical and tabular formats.

It describes the overall architecture of the system,
the motivation behind the technology choices, and
the integration of the different sub–systems into a
coherent, efficient whole.

It also explains a few ideas used in the implemen-
tation that may be original and/or useful.

Contents

1 Introduction 1

1.1 System Overview 1

1.2 Requirements 2

1.2.1 Generality 2

1.2.2 Modular Views 2

1.2.3 Flexible Data Source 2

1.2.4 Open, Standards 2

1.3 Architecture 2

2 Data Layer 2

2.1 Object Graphs 3

2.2 Caching 3

2.3 IBatis 3

3 Controller 4

3.1 Facets 4

3.2 Spring 4

∗andrew@acooke.org

4 Model 5

4.1 Command Objects 5
4.2 Presentations 5

5 Views 6

5.1 Tables 6
5.2 Images 6
5.3 Embedding 6
5.4 URL Rewriting 6
5.5 Style 6
5.6 Ajax 6

6 Testing 7

7 Conclusion 7

7.1 Technologies 7
7.2 Ideas 7
7.3 Example: Image Map 7

8 Acknowledgements 8

1 Introduction

Below I give a fairly detailed summary of a single
system. It is very easy to find introductory articles
that describe single technologies, or high-level views
that describe architecture in broad terms, but it is
harder to find something in the middle ground: de-
tails on how to integrate a range of technologies into
a coherent whole.

1.1 System Overview

The system described here presents quality metrics
in various ways. The data are quite varied — the
metrics describe a complex technical process that has

1

global scope — and a lot of work (not described here)
went into defining a suitable model.

This server, which presents these data in various
ways, is only one part of a larger system that collects
and manages the data.

1.2 Requirements

The requirements below guided the architecture and
implementation.

1.2.1 Generality

The data model described in 1.1 is very general. A
previous system produced high quality presentations
(in a single format), but had an architecture that did
not exploit this generality and so could not easily be
extended to display additional metrics.

In contrast, this system must be able to generate
displays for any metric. It must also be able to dis-
play new metrics as they are added to the system,
without any modification.

1.2.2 Modular Views

The server will present data to a variety of differ-
ent consumers. It must allow for data exploration
(browsing), but also provide access to the data for
more detailed analysis with third–party tools (eg.
spreadsheets). It should be possible to embed im-
ages generated by the system in other presentations
(both powerpoints and web sites) and it should also
be easy to find related views of the same data (given
an image, it should be easy to access a table of the
values used to form that image, for example).

These requirements imply that the server is a ser-
vice — that it should fit easily within a Service-
Oriented Architecture — but that it must also ap-
pear as a user–friendly, interactive web site. This
leads naturally to an approach based on Representa-
tional State Transfer (REST).

1.2.3 Flexible Data Source

Uncertainty about the final storage technology means
that the system must be able to adapt to different
data sources. The current implementation uses an

SQL database (MySQL or Oracle), but it should be
possible to migrate to other (non-SQL) providers.

This requirement limits the scope of any Object–
Relational Mapping (ORM). The technology used to
interface to the data source should be limited in scope
and relatively easy to replace.

1.2.4 Open, Standards

Finally, it must be easy to extend the system.

For this, a clean architecture is necessary. Expos-
ing that via Spring configuration allows new views to
be wired into the existing support with little or no
modification of the server infrastructure (ie. lower,
non–view layers).

A further, implicit aspect of extensibility is that
the system must be easy for other engineers to under-
stand and modify. Existing, open, standard solutions
come with broad online support.

1.3 Architecture

In broad terms, the architecture follows the standard
model–view–controller (MVC) pattern, which talks
to the data source via an abstraction layer (Data Ac-
cess Object, or DAO).

2 Data Layer

The data layer implementation was driven by:

A The requirement described in 1.2.3: that it must
be possible to change the underlying data source.

B The need to support quite complex data explo-
ration. This might include, during iterative de-
velopment, relationships not explicit in the orig-
inal data model.

C The need for good performance (caching) and
graceful handling of updated data (the addition
of new values).

D A desire for a system whose properties can be eas-
ily understood.

2

Note that the system is read–only. It presents, but
does not modify, data. In terms of the REST ap-
proach (see 1.2.2) it handles only GET requests.

2.1 Object Graphs

B suggests that we will have strongly inter–connected
data structures. This could raise issues with C, in
a traditional (transparent) ORM approach, since it
may be difficult to expire/replace some sections of
the graph. At the same time, A and D suggest that
a simple, explicit solution might be preferable to a
more automated approach.

When the information stored in the database is
used to generate objects in Java we create a graph.
The objects are nodes; the links between objects (typ-
ically implemented as references and accessed by get-
ters and setters) are arcs.

A traditional, implicit ORM approach generates
this graph of objects automatically. This can sim-
plify the Java code but makes it difficult to control
the caching of individual objects (since links between
objects tends to keep them in memory).

Instead, for this server, I separated the nodes and
arcs. Each object can be retrieved by key, but does
not link to any other object. Instead, the interface
to the data source provides keys for related objects.
This makes some Java code slightly more complex,
but makes it much easier to control caching, support
different data sources, and expose relationships that
were unexpected in the design of the original data
model1.

One consequence of this approach is that the Java
code does not have to traverse graphs of objects in
various ways to infer relationships. Instead, the ap-
propriate method in the data layer is called. This is
currently an advantage because relationships are easy
to express declaratively in SQL. However, it may be-
come a disadvantage when moving to a less flexible
non–SQL data source.

1I am sure it would be possible, with sufficient work and
care, to present the solution described here in a more trans-
parent, implicit manner. My argument is only that the explicit
approach is simpler and more than “good enough.”

2.2 Caching

The data model supports two kinds of objects. Some
objects are measurements. Other objects describe
those measurements (for example, they identify the
property being measured, the type of measurement,
any classification applied to the measurement, etc).
In this context we can consider the measurements to
be “data” and the descriptive objects to be “meta-
data”.

In addition to the data and metadata objects, we
also have information about the relationships be-
tween objects (these are separate from the objects
themselves — see 2.1).

The system uses three caches, for these three kinds
of information (data, metadata, and relationships).

• The first cache, using strong references, keeps
all the metadata in memory. These objects are
flushed periodically so that they can reflect up-
dates to the database, but are otherwise perma-
nently available.

• The second cache, using weak references, man-
ages information about relationships. As much
information as possible is cached, but it can be
expired by Java garbage collection.

• The third cache, using a limited amount of mem-
ory, with expiry of least recently used data, holds
recently accessed data (measurement) values.

As a result the server has efficient access to sys-
tem metadata without blocking progressive updates
as the underlying data set is extended. In addition,
there is no restriction on the relationships that can be
provided by the data layer — new relationships are
easy to add during development. The system can be
developed in an iterative, incremental manner, but
will always work efficiently.

2.3 IBatis

The iBatis Data Mapper framework is a good match
to the approach outlined in 2.1 and 2.2.

The final implementation, built on iBatis, uses
three levels of interfaces:

3

• At the lowest level is a thin wrapper around the
iBatis client that adds support for Java Gener-
ics. Methods here return sets of objects given
a named query (the query identifies the SQL to
execute).

• At the middle level is a more explicit interface
that gives typed access to the various objects and
relationships. At this level the relationships are
expressed in terms of keys.

• The top level (the DAO itself) is similar to
the middle level, but presents relationships as
objects (it automates the retrieval of instances
given the keys).

Support for a different data source would probably
implement the middle layer; the lower layer is too
specific to iBatis and the upper layer automates work
that any data source would need to implement.

Within this implementation, iBatis provides the
following benefits:

• Mapping from SQL to Java objects is easy to
configure and modify.

• SQL and mapping information is kept separate
from the Java code.

• The caching outlined in 2.2 is easy to configure.

• It is easy to adapt the SQL to the underlying
database engine.

3 Controller

The system’s core follows the usual MVC pattern,
using Spring MVC.

Almost all requests are handled by a single
controller, which delegates to a handler (or sub–
controller). The handler, selected from a lookup table
via four facets (described below), provides the com-
mand object and view.

3.1 Facets

Exploring some typical use cases gave a set of four
largely orthogonal facets that a user might specify in
a request. These are:

Content Type may be inferred from the HTTP re-
quest or specified as an additional parameter. It
is the main factor in determining which view to
use.

Subject describes the kind of data that will be dis-
played. It may be a simple measurement, an
average, etc. This is the main factor in deter-
mining what data are retrieved from the data
layer (via the command object — see 4.1).

Style describes how the data are displayed. It may
be in a table, as a line plot, etc. This typically
correlates with Content Type, but is particularly
useful in selecting the view when the result will
be displayed as HTML (since that Content Type
supports both tables and graphs).

Grouping is related to a detail of the data model
— grouped data are handled in a distinct way. I
will not describe this further here.

By expressing facets within the REST URL we sup-
port, in an intuitive, simple way, the selection of dif-
ferent services that display related data. For exam-
ple, changing the style in a URL from line plot to
table will give the data that were displayed in the
graph. This URL rewriting can be done by an ad-
vanced user, but is also the basis for generating re-
lated pages during exploratory data analysis (5.4).

In addition, of course, the user must identify the
data to display. But those details do not alter the
choice of command object or view. This is a conse-
quence of the very general nature of the data model,
as mentioned in 1.2.1.

3.2 Spring

Not all combinations of facets are supported. For
example: graphs are not displayed via CSV and XML
content types; tables of data are not displayed via
PNG images.

4

Supported combinations of facets, and the associ-
ated models and views, are configured via handler ob-
jects. The controller searches through the handlers
until it finds one that supports the facets inferred
from the URL.

Exposing the controller via Spring XML configu-
ration files allows the system to be easily configured.
The configuration also serves as a form of documen-
tation. However, native Spring XML configuration is
rather verbose, which obscures the relevant details.
The use of a custom namespace handler allows a more
concise format:

<kpi:controller>

<kpi:handler contentType="PNG" style="BARS"

subject="VALUES" group="false"

command="VALUES" view="pngBarChart">

<ref bean="entityTitles"/>

</kpi:handler>

<kpi:handler contentType="XML" style="TABLE"

subject="AVERAGE" group="false"

command="AVERAGE" view="xmlTable">

<ref bean="valuesDates"/>

<ref bean="valuesTable"/>

</kpi:handler>

...

</kpi:controller>

The fragment of XML configuration above shows
how each handler associates a model (the command
object — see 4.1) and view with a set of facets.

The lists of beans within each handler are “pre-
sentations”. These extend the model in various ways
and are explained in 4.2.

4 Model

The model is a simple Map from names (Strings) to
arbitrary Objects. It is provided to the view via the
Spring MVC API.

Construction of the model is a three step process:

• Simple values (the facets described in 3.1 and
additional URL parameters like start and end
dates) are extracted from the HTTP request.
This step may include calling the data layer to
convert from keys to object instances.

• Data (measurements) may be requested from the
data layer.

• Presentations modify and extend the model.

4.1 Command Objects

Command objects handle the first two steps above.
Although Spring MVC includes support for command
objects this system uses custom code that is closely
integrated with the URL rewriting described in 5.4.

The command object pattern is the transparent
binding of attributes in an object to values inferred
from the HTTP request. Typically, support code in-
stantiates an instance of the appropriate Java bean
and uses reflection to populate its attributes with
HTTP parameters.

In the implementation used here annotations iden-
tify instance variables. These are bound to values
from the request. In addition, sufficient information
is stored in the model to reconstruct the URL, pos-
sibly in a modified form (see 5.4).

So a request is handled with the following steps:

• The controller selects a handler based on the in-
coming request.

• The handler specified a command object class,
which the controller uses to instantiate an in-
stance.

• The command object support code “magically”
populates the command object’s instance vari-
ables (which are annotated appropriately).

• A method is invoked on the command object
(which implements a standard interface) that
does the work necessary to construct the model.

The advantages of using this pattern are that the
model construction is separated from the details of
exactly how particular values are extracted from the
HTTP request.

4.2 Presentations

Once the command object has generated the initial
model, it is passed to the presentations. These usu-
ally perform simple modifications that are common
across many different handlers, such as adding title
and axis labels.

5

Command objects extract data of a particular type
while presentations are responsible for more general
processing. So presentations and command objects
tend to provide orthogonal functionality. Dividing
responsibilities in this way simplifies the code while
making the system as a whole more flexible.

5 Views

The Spring MVC framework supports a wide variety
of views. These are specified in the configuration —
there is no need to modify any code when introducing
a new view technology.

5.1 Tables

XML and CSV tables are generated by dedicated
Java classes that write directly to the servlet re-
sponse.

The HTML table is generated by a simple JSP page
(the table is present in the model and is iterated over
by JSTL tags).

In all cases the model data, extracted from the
data layer by the command objects, is modified by a
presentation object to create List〈List〈String〉〉 values
that are easily handled by the appropriate view. One
presentation uses introspection and can be configured
to generate data from a variety of classes. In other
cases it was simpler to write dedicated presentations.

5.2 Images

Images are generated by Java classes that call the
JFreeChart library.

5.3 Embedding

PNG images, as described in 5.2 are returned when
the content type is appropriate, but it is also possible
to request the same data in an HTML page. In this
case a JSP view is called which constructs a page
that embeds the PNG image using a 〈img〉 element.
The URL for the image is identical to that used for
the surrounding page, except for the content type
facet (3.1). When the HTML page is rendered by

the client’s browser the server is called again and the
PNG image itself is generated.

5.4 URL Rewriting

Changing the content type, as described above, is a
simple form of URL rewriting. JSP pages have ac-
cess to a wide variety of rewritten URLs via functions
implemented in the JSP Expression Language (EL).
These functions are static, but take as first argument
an object that is added to all models and which pro-
vides modified versions of the current URL (see 3.1).
The static function dispatches the request to this ob-
ject.

This approach is somewhat unusual — it is more
common to expose functionality that depends on the
model as custom tags — but the compact expression
language syntax gives a cleaner page structure.

5.5 Style

The Yahoo User Interface (YUI) library makes cross–
platform CSS easy and simple (including 3 column
layouts).

5.6 Ajax

Almost all HTML views are constructed on the server
by a few JSP pages. The emphasis on a REST in-
terface and the ability to rewrite URLs by changing
facets (3.1, 5.4), enable a rich interface through quite
simple HTML.

However, the initial selection of which data to plot
is complex and involves such a large number of op-
tions that a dynamic AJAX solution is needed.

On the server side a dedicated Java class calcu-
lates the children for any particular node in the menu.
This is a plain Java object, configured in Spring.

On the client side, the YUI toolkit is used to
present the selection as a dynamic tree menu.

The connection between the server’s Java code,
which calculates the menu structure, and the client
side Javascript that presents the data, is handled by
Direct Web Remoting (DWR). Only a small change
to the Spring configuration on the server is required.
DWR then uses introspection to generate a Javascript

6

proxy. The result is a Javascript object on the client
that transparently calls the server code.

6 Testing

Unit testing was performed with JUnit. The modular
nature of the architecture makes it easy to test most
parts of the system.

Integration testing is also performed, using Jetty
within JUnit. This is very useful and provides excel-
lent code coverage.

7 Conclusion

7.1 Technologies

The following technologies worked well together:

Spring MVC [1] provides the MVC core.

JSP (using JSTL and EL [2]) simplified generation
of “basic” HTML views.

JFreeChart [3] was used to generate images on de-
mand.

YUI [4] provided CSS and Ajax on the client.

DWR [5] exposed server–side Java logic to
Javascript objects.

IBatis [6] simplified the data layer and provided
caching.

Spring configuration allows extensibility and sup-
ports customised syntax for the controller.

7.2 Ideas

The following ideas were helpful in this particular
case:

Explicit Object Graphs in the data layer (simpli-
fied caching and replaceability) — 2.1.

REST, Facets, and URL Rewriting support
both data exploration and use of the system
within a broader Service–Oriented Architecture
— 3.1.

Presentations provide functionality that comple-
ments command objects – 4.2.

EL Functions Dispatch on objects in the model2.
This gives cleaner JSP code that custom tags –
5.4.

7.3 Example: Image Map

As a final summary I will outline how extra function-
ality was added in a late development iteration.

At the start of the iteration it was possible to gen-
erate an image and embed that image in an HTML
page. But it was not possible to click on the image
to “drill down” to increased detail. To enable this an
image map had to be added to the HTML page.

JFreeChart supports the generation of image maps,
so the work required was:

1. Extending the classes that generate the image so
that they could also produce an image map (via
a separate call). This used the URL rewriter to
generate appropriate URLs for various parts of
the image.

2. Locating the handler for the HTML page in the
controller configuration and changing the com-
mand object to match the one defined for the
PNG image handler (initially the HTML page
command object did not retrieve the data to be
plotted; it is now needed to generate the image
map).

3. Adding a presentation to the HTML page han-
dler that calls the code written in step 1, adding
the image map to the model.

4. Extending the JSP view so that, if an image
map is present in the model, it is included in
the HTML output.

Note how little of the existing code had to be
changed to add this extra functionality. Almost all

2So, for example, the model may contain a Foo object which
has an instance method doSomething(...) and a static method
doSomething(Foo, ...). The static method is added as a custom
function, called with the Foo instance as first argument, and
invokes the instance method.

7

the modifications are simple additions or adjustments
to the configuration. This demonstrates how the sys-
tem supports extension with little risk of damaging
existing functionality.

Also, because recent measurement data is cached,
this extension comes with little cost in response time.
The call to generate the PNG image, made as soon
as the HTML page is rendered, re–uses the cached
data.

8 Acknowledgements

This work was done for ISTI [7], who are nice enough
to let me implement whatever I think makes sense
(and then let me write about it).

References

[1] Spring Application Framework
http://www.springframework.org/

[2] JSP Expression Language
http://java.sun.com/developer/EJTechTips/2004/tt0126.html

[3] JFreeChart
http://www.jfree.org/jfreechart/

[4] Yahoo! User Interface Library
http://developer.yahoo.net/yui

[5] Direct Web Remoting
http://directwebremoting.org/

[6] IBatis
http://ibatis.apache.org/

[7] ISTI
http://www.isti.com/

8

