| Andrew Cooke | Contents | Latest | RSS | Twitter | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Lepl parser for Python.

Colorless Green.

Photography around Santiago.

SVG experiment.

Professional Portfolio

Calibration of seismometers.

Data access via web services.

Cache rewrite.

Extending OpenSSH.

C-ORM: docs, API.

Last 100 entries

Lebanese Writer Amin Maalouf; Learning From Trump; Chinese Writer Hu Fayun; C++ - it's the language of the future; And; Apricot Jam; Also; Excellent Article on USA Politics; Oh Metafilter; Prejudice Against The Rurals; Also, Zizek; Trump; Why Trump Won; Doxygen + Latex on CentOS 6; SMASH - Solve 5 Biggest Problems in Physics; Good article on racism, brexit, and social divides; Grandaddy are back!; Consciousness From Max Entropy; Democrats; Harvard Will Fix Black Poverty; Modelling Bicycle Wheels; Amusing Polling Outlier; If Labour keeps telling working class people...; Populism and Choice; Books on Defeat; Enrique Ferrari - Argentine Author; Transcript of German Scientists on Learning of Hiroshima; Calvert Journal; Owen Jones on Twitter; Possible Japanese Authors; Complex American Literature; Chutney v5; Weird Componentized Virus; Interesting Argentinian Author - Antonio Di Benedetto; Useful Thread on MetaPhysics; RAND on fighting online anarchy (2001); NSA Hacked; Very Good LRB Article on Brexit; Nussbaum on Anger; Tasting; Apple + Kiwi Jam; Hit Me; Sudoku - CSP + Chaos; Recycling Electronics In Santiago; Vector Displays in OpenGL; And Anti-Aliased; OpenGL - Render via Intermediate Texture; And Garmin Connect; Using Garmin Forerunner 230 With Linux; (Beating Dead Horse) StackOverflow; Current State of Justice in China; Axiom of Determinacy; Ewww; Fee Chaos Book; Course on Differential Geometry; Okay, but...; Sparse Matrices, Deep Learning; Sounds Bad; Applebaum Rape; Tomato Chutney v4; Have to add...; Culturally Liberal and Nothing More; Weird Finite / Infinite Result; Your diamond is a beaten up mess; Maths Books; Good Bike Route from Providencia / Las Condes to Panul; Iain Pears (Author of Complex Plots); Plum Jam; Excellent; More Recently; For a moment I forgot StackOverflow sucked; A Few Weeks On...; Chilean Book Recommendations; How To Write Shared Libraries; Jenny Erpenbeck (Author); Dijkstra, Coins, Tables; Python libraries error on OpenSuse; Deserving Trump; And Smugness; McCloskey Economics Trilogy; cmocka - Mocks for C; Concept Creep (Americans); Futhark - OpenCL Language; Moved / Gone; Fan and USB issues; Burgers in Santiago; The Origin of Icosahedral Symmetry in Viruses; autoenum on PyPI; Jars Explains; Tomato Chutney v3; REST; US Elections and Gender: 24 Point Swing; PPPoE on OpenSuse Leap 42.1; SuperMicro X10SDV-TLN4F/F with Opensuse Leap 42.1; Big Data AI Could Be Very Bad Indeed....; Cornering; Postcapitalism (Paul Mason); Black Science Fiction; Git is not a CDN; Mining of Massive Data Sets; Rachel Kaadzi Ghansah

© 2006-2015 Andrew Cooke (site) / post authors (content).

Solving Grid Puzzle in Python

From: andrew cooke <andrew@...>

Date: Thu, 30 Aug 2012 06:22:42 -0400

A neat little puzzle I spent some rainy holiday time on is described at 
http://stackoverflow.com/questions/12177600

[This post has been updated since first posting]

The code below is my final attempt, which solves the puzzle in under 3
secs.  I'm posting it here rather than updating the SO post as it's
more complex and not going to help people trying to understand the
basic idea.

One new feature here is that I restrict the search over all solutions
to a single symmetry (so there are four times as many solutions as
found, which can be generated by flipping the solution vertically,
horizontally, or both).  Finding the best way to enforce this was the
hardest part of the entire problem - I finally hit upon requiring the
largest value to be at a certain corner.

Andrew


#!/usr/bin/python3

nx, ny = 4, 5
values = [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,35,36,40]
# grid[x][y] so it is a list of columns (prints misleadingly!)
grid = [[0 for _ in range(ny)] for _ in range(nx)]
# cache these to avoid re-calculating
xy_moves = {}
debug = False

def edges(grid, x, y):
    'coordinates of vertical/horizontal neighbours'
    return [(x-1,y),(x+1,y),(x,y-1),(x,y+1)]

def corners(grid, x, y):
    'coordinates of vertical/horizontal neighbours'
    return [(x-1,y-1),(x+1,y-1),(x-1,y+1),(x+1,y+1)]

def inside(coords):
    'filter coordinates inside the grid'
    return ((x, y) for (x, y) in coords 
            if x > -1 and x < nx and y > -1 and y < ny)

def filled(grid, coords):
    'filter coords to give only filled cells'
    return filter(lambda xy: grid[xy[0]][xy[1]], coords)

def count_neighbours(grid, x, y):
    '''use this to find most-constrained location
    including corners makes the global search with symmetry removal slightly
    slower (2m40s v 2m20s), but the (2,2)=10 search faster (2s v 6s),
    presumably because edges alone hits the symmetry test sooner.'''
#    return sum(1 for _ in filled(grid, inside(edges(grid, x, y))))
    return sum(1 for _ in filled(grid, inside(edges(grid, x, y)))) + \
        sum(0.5 for _ in filled(grid, inside(corners(grid, x, y))))

def cluster(grid, depth):
    '''given a certain depth in the search, where should we move next?  
       choose a place with lots of neighbours so that we have good 
       constraints (and so can reject bad moves)'''
    if depth not in xy_moves:
        best, x, y = 0, 0, 0 # default matches symmetry check
        for xx in range(nx):
            for yy in range(ny):
                if not grid[xx][yy]:
                    count = count_neighbours(grid, xx, yy)
                    if count > best:
                        best, x, y = count, xx, yy
        xy_moves[depth] = (x, y)
        if debug: print('next move for %d is %d,%d' % (depth, x, y))
    return xy_moves[depth]

def to_corners(grid, depth):
    '''alternative move sequence, targetting corners first.
    much slower - 110m for all values.'''
    if depth not in xy_moves:
        if depth >= 2*(nx+ny) - 4:
            cluster(grid, depth)
        else:
            d = depth
            if d < nx: xy_moves[depth] = (d, 0)
            else:
                d -= nx
                if d+1 < ny: xy_moves[depth] = (0, 1+d)
                else:
                    d -= ny-1
                    if d+1 < nx: xy_moves[depth] = (1+d, ny-1)
                    else:
                        d -= nx-1
                        xy_moves[depth] = (nx-1, d+1)
            if debug: 
                print('next move for %d is %s' % (depth, xy_moves[depth])) 
    return xy_moves[depth]

def drop_value(value, values):
    'remove value from the values'
    return [v for v in values if v != value]

def copy_grid(grid, x, y, value):
    'copy grid, replacing the value at x,y'
    return [[value if j == y else grid[i][j] for j in range(ny)]
            if x == i else grid[i]
            for i in range(nx)]

def move_ok(grid, x, y, value):
    'are all neighbours multiples?'
    for (xx, yy) in filled(grid, inside(edges(grid, x, y))):
        g = grid[xx][yy]
        if (g > value and g % value) or (g < value and value % g):
            if debug: 
                print('fail: %d at %d,%d in %s' % (value, x, y, grid))
            return False
    return True

def always_ok(grid):
    'dummy test to allow all solutions'
    return True

def check_corners(grid):
    '''remove symmetrically-identical solutions by requiring the largest
    corner to be top right (took a long time to think of this constraint)'''
    return grid[0][0] >= max(grid[0][ny-1], grid[nx-1][0], grid[nx-1][ny-1])

def search(grid, values, next_xy=cluster, symmetry_ok=always_ok, depth=0):
    'search over all values, backtracking on failure'
    if symmetry_ok(grid):
        if values:
            (x, y) = next_xy(grid, depth)
            for value in values:
                if move_ok(grid, x, y, value):
                    if debug: print('add %d to %d,%d' % (value, x, y))
                    for result in search(copy_grid(grid, x, y, value),
                                         drop_value(value, values), 
                                         next_xy, symmetry_ok, depth+1):
                        yield result
        else:
            yield grid


# run the search, knowing that (2,2) (which is (1,1) for zero-indexing)
# has the value 10.
for result in search(copy_grid(grid, 1, 1, 10), drop_value(10, values)):
    print(result)

# how many solutions in total?
xy_moves = {} # reset cache
for (n, solution) in enumerate(search(grid, values, next_xy=to_corners,
for (n, solution) in enumerate(search(grid, values, next_xy=cluster,
                                      symmetry_ok=check_corners)):
    print('%d: %s' % (n, solution))

Comment on this post