| Andrew Cooke | Contents | Latest | RSS | Twitter | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Lepl parser for Python.

Colorless Green.

Photography around Santiago.

SVG experiment.

Professional Portfolio

Calibration of seismometers.

Data access via web services.

Cache rewrite.

Extending OpenSSH.

C-ORM: docs, API.

Last 100 entries

Telephone System Quotes for Cat Soft LLC; Even; Cherry Jam; Lebanese Writer Amin Maalouf; Learning From Trump; Chinese Writer Hu Fayun; C++ - it's the language of the future; And; Apricot Jam; Also; Excellent Article on USA Politics; Oh Metafilter; Prejudice Against The Rurals; Also, Zizek; Trump; Why Trump Won; Doxygen + Latex on CentOS 6; SMASH - Solve 5 Biggest Problems in Physics; Good article on racism, brexit, and social divides; Grandaddy are back!; Consciousness From Max Entropy; Democrats; Harvard Will Fix Black Poverty; Modelling Bicycle Wheels; Amusing Polling Outlier; If Labour keeps telling working class people...; Populism and Choice; Books on Defeat; Enrique Ferrari - Argentine Author; Transcript of German Scientists on Learning of Hiroshima; Calvert Journal; Owen Jones on Twitter; Possible Japanese Authors; Complex American Literature; Chutney v5; Weird Componentized Virus; Interesting Argentinian Author - Antonio Di Benedetto; Useful Thread on MetaPhysics; RAND on fighting online anarchy (2001); NSA Hacked; Very Good LRB Article on Brexit; Nussbaum on Anger; Tasting; Apple + Kiwi Jam; Hit Me; Sudoku - CSP + Chaos; Recycling Electronics In Santiago; Vector Displays in OpenGL; And Anti-Aliased; OpenGL - Render via Intermediate Texture; And Garmin Connect; Using Garmin Forerunner 230 With Linux; (Beating Dead Horse) StackOverflow; Current State of Justice in China; Axiom of Determinacy; Ewww; Fee Chaos Book; Course on Differential Geometry; Okay, but...; Sparse Matrices, Deep Learning; Sounds Bad; Applebaum Rape; Tomato Chutney v4; Have to add...; Culturally Liberal and Nothing More; Weird Finite / Infinite Result; Your diamond is a beaten up mess; Maths Books; Good Bike Route from Providencia / Las Condes to Panul; Iain Pears (Author of Complex Plots); Plum Jam; Excellent; More Recently; For a moment I forgot StackOverflow sucked; A Few Weeks On...; Chilean Book Recommendations; How To Write Shared Libraries; Jenny Erpenbeck (Author); Dijkstra, Coins, Tables; Python libraries error on OpenSuse; Deserving Trump; And Smugness; McCloskey Economics Trilogy; cmocka - Mocks for C; Concept Creep (Americans); Futhark - OpenCL Language; Moved / Gone; Fan and USB issues; Burgers in Santiago; The Origin of Icosahedral Symmetry in Viruses; autoenum on PyPI; Jars Explains; Tomato Chutney v3; REST; US Elections and Gender: 24 Point Swing; PPPoE on OpenSuse Leap 42.1; SuperMicro X10SDV-TLN4F/F with Opensuse Leap 42.1; Big Data AI Could Be Very Bad Indeed....; Cornering; Postcapitalism (Paul Mason); Black Science Fiction

© 2006-2015 Andrew Cooke (site) / post authors (content).

Efficient Entropy Estimates for Sequences of Large Values with OpenCL

From: andrew cooke <andrew@...>

Date: Sat, 8 Oct 2011 21:43:34 -0300

I need to estimate the entropy of sequences of large numbers in OpenCL.

The basic idea is to find how often each number occurs and then use the
Shannon (p ln(p)) formula.  But doing that naively in OpenCL is hard - the
numbers are too large to use a simple array (where we increment array[n] each
time we find value n).

(By "large number" I mean that they are represented as an arbitrary number of
32 bit ints).

The sequence length is much shorter than the maximum number and although the
numbers are large certain values are likely to repeat often.  So one approach
is to generate a lookup-table that associates each number with an index and
then historgam the indices.  But I cannot see how to do that efficiently or
easily in OpenCL.

The best idea I have had so far is to use modular arithmetic.  For example,
take the numbers modulo 2^8 and then increment a 255 entry array.  But modulo
2^n simply discards bits past n and the numbers are actually "bit patterns",
so I don't want to do that.  So it seems better to work modul some prime value
(or perhaps several).

Thanks to the magic of modular arithmetic it seems to be relatively easy to
convert large (multi-int32) numbers to their modulo:

   a0 + 2^32 (a1 + 2^32 (a2 + ...))
     = (a0 % n) + (2^32 % n) * ((a1 % n) + (2^32 % n) * ((a2 % n) + ...))

and if I use a prime less than 2^16 (I am thinking a value like 17 might be
enough!) then I can do the above in 32 bit ints without any problems.

I hope that makes sense.  Anyone have any better ideas?  I don't need entropy
exactly - all I want is a number that indicates "how statistically random"
some sequence is in a way that is reasonably smooth and sensitive (since it
will be used as a fitness measure in a GA).  And no, I don't really have any
clues about what a good statistical measure would be, but it would be nice if
it could reject a simple counter (which entropy cannot, so there is certainly
room for improvement).

(Background - the values are the binary state of a system that generates
"rhythms"; the system is deterministic it and tends "naturally" to generate
simple repeating patterns - the aim is to evolve away from that).

Andrew

Radix Sorting

From: andrew cooke <andrew@...>

Date: Sat, 8 Oct 2011 22:22:44 -0300

I just remembered - radix sorting is probably the "right" way to do this.

See for example http://www.moderngpu.com/sort/algo.html

Andrew

Comment on this post