Andrew Cooke | Contents | Latest | RSS | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Choochoo Training Diary

Last 100 entries

Surprise Paradox; [Books] Good Author List; [Computing] Efficient queries with grouping in Postgres; [Computing] Automatic Wake (Linux); [Computing] AWS CDK Aspects in Go; [Bike] Adidas Gravel Shoes; [Computing, Horror] Biological Chips; [Books] Weird Lit Recs; [Covid] Extended SIR Models; [Art] York-based Printmaker; [Physics] Quantum Transitions are not Instantaneous; [Computing] AI and Drum Machines; [Computing] Probabilities, Stopping Times, Martingales; bpftrace Intro Article; [Computing] Starlab Systems - Linux Laptops; [Computing] Extended Berkeley Packet Filter; [Green] Mainspring Linear Generator; Better Approach; Rummikub Solver; Chilean Poetry; Felicitations - Empowerment Grant; [Bike] Fixing Spyre Brakes (That Need Constant Adjustment); [Computing, Music] Raspberry Pi Media (Audio) Streamer; [Computing] Amazing Hack To Embed DSL In Python; [Bike] Ruta Del Condor (El Alfalfal); [Bike] Estimating Power On Climbs; [Computing] Applying Azure B2C Authentication To Function Apps; [Bike] Gearing On The Back Of An Envelope; [Computing] Okular and Postscript in OpenSuse; There's a fix!; [Computing] Fail2Ban on OpenSuse Leap 15.3 (NFTables); [Cycling, Computing] Power Calculation and Brakes; [Hardware, Computing] Amazing Pockit Computer; Bullying; How I Am - 3 Years Post Accident, 8+ Years With MS; [USA Politics] In America's Uncivil War Republicans Are The Aggressors; [Programming] Selenium and Python; Better Walking Data; [Bike] How Fast Before Walking More Efficient Than Cycling?; [COVID] Coronavirus And Cycling; [Programming] Docker on OpenSuse; Cadence v Speed; [Bike] Gearing For Real Cyclists; [Programming] React plotting - visx; [Programming] React Leaflet; AliExpress Independent Sellers; Applebaum - Twilight of Democracy; [Politics] Back + US Elections; [Programming,Exercise] Simple Timer Script; [News] 2019: The year revolt went global; [Politics] The world's most-surveilled cities; [Bike] Hope Freehub; [Restaurant] Mama Chau's (Chinese, Providencia); [Politics] Brexit Podcast; [Diary] Pneumonia; [Politics] Britain's Reichstag Fire moment; install cairo; [Programming] GCC Sanitizer Flags; [GPU, Programming] Per-Thread Program Counters; My Bike Accident - Looking Back One Year; [Python] Geographic heights are incredibly easy!; [Cooking] Cookie Recipe; Efficient, Simple, Directed Maximisation of Noisy Function; And for argparse; Bash Completion in Python; [Computing] Configuring Github Jekyll Locally; [Maths, Link] The Napkin Project; You can Masquerade in Firewalld; [Bike] Servicing Budget (Spring) Forks; [Crypto] CIA Internet Comms Failure; [Python] Cute Rate Limiting API; [Causality] Judea Pearl Lecture; [Security, Computing] Chinese Hardware Hack Of Supermicro Boards; SQLAlchemy Joined Table Inheritance and Delete Cascade; [Translation] The Club; [Computing] Super Potato Bruh; [Computing] Extending Jupyter; Further HRM Details; [Computing, Bike] Activities in ch2; [Books, Link] Modern Japanese Lit; What ended up there; [Link, Book] Logic Book; Update - Garmin Express / Connect; Garmin Forerunner 35 v 230; [Link, Politics, Internet] Government Trolls; [Link, Politics] Why identity politics benefits the right more than the left; SSH Forwarding; A Specification For Repeating Events; A Fight for the Soul of Science; [Science, Book, Link] Lost In Math; OpenSuse Leap 15 Network Fixes; Update; [Book] Galileo's Middle Finger; [Bike] Chinese Carbon Rims; [Bike] Servicing Shimano XT Front Hub HB-M8010; [Bike] Aliexpress Cycling Tops; [Computing] Change to ssh handling of multiple identities?; [Bike] Endura Hummvee Lite II; [Computing] Marble Based Logic; [Link, Politics] Sanity Check For Nuclear Launch; [Link, Science] Entropy and Life

© 2006-2017 Andrew Cooke (site) / post authors (content).

Efficient Collision Detection with Pessimistic Measures

From: "andrew cooke" <andrew@...>

Date: Sat, 15 Sep 2007 16:16:32 -0400 (CLT)

I'm modelling a set of colliding lines (rods in 2D) and using Napito to
plot their trajectories.

Modelling individual lines is easy; the problem is reliably detecting
collisions.  In particular, I need to find the *first* collision amongst
all lines (since the movements change after a collision I am simply
restarting after that point - a future optimisation might do something
more sophisticated).

So this is some kind of search.  The trouble is that I don't have an
analytic solution for collisions.  Instead I have a fairly efficient but
pessimistic (it may give false positives) method for determining whether
any two lines touch within a given interval and an iterative method for
determining the time of intersection within some interval that is only
reliable in the limit of small intervals.

Finding the first possible pair of lines ("candidates") is easy - just use
the pessimistic method over progressively smaller time intervals.  But the
"limit of small intervals" makes everything uncertain and possibly
expensive - if you narrow down on an interval to search, and then find
that that it was unsuccessful (which is possible, since the initial
process is pessimistic), then what do you do?  It seems that you are
forced into a fairly detailed systematic search over time (and of
necessarily small intervals).

Fortunately, I can implement the candidate test in a way that makes it
progressively less pessimistic as the time interval decreases (it's
asymptotically correct).  So an explicit search is not that expensive. 
What becomes an issue then is the efficient broadening of the search to
include other candidates if the initial "best" fails.

This suggests that the best approach is to use a depth first search in
time (consider the tree that successively divides intervals in half),
discarding lines when they are not part of the overlapping group as you
descend, pruning when there are no candidates, and using the iterative
method as a test only at the very bottom "leaf" intervals.

In retrospect that seems obvious, but it's taken me a heck of a time to
see it clearly.  I keep being tempted to use the iterative method sooner
(when it works it converges rapidly, but when it fails I am left with no
way to fold that knowledge back into the search).

I guess there may be a future optimisation which uses the iterative
approach in some kind of speculative manner.  Perhaps when I am more
confident about its properties (it's just an analytic solution to a linear
approximation).

Andrew

Subtle, but Correct (I Hope)

From: "andrew cooke" <andrew@...>

Date: Sat, 15 Sep 2007 17:27:17 -0400 (CLT)

I forgot to mention an additional concern.  It's not really a concern,
since I think the previous argument is correct, but it was one reason I
took so long to get this clear.

Since the initial restriction is pessimistic you may, for any finite
interval, be "blocked" from finding a correct pair of colliding the lines
by the presence of one or more "confusing" lines, which are incorrectly
included.

This is resolved by searching all time ranges in progressively smaller
intervals and relying on the asymptotically correct behaviour to
eventually weed out the confusion.

What I had been trying to do, without much success, was remove the
confusion by pushing information back "up" the search tree.

Andrew

Comment on this post